Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4376, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35902572

RESUMO

Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.


Assuntos
Bacillus thuringiensis , Nanopartículas , Animais , Proteínas de Bactérias/toxicidade , Endotoxinas , Proteínas Hemolisinas/toxicidade , Larva , Controle de Mosquitos
2.
Microorganisms ; 10(5)2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35630346

RESUMO

Providencia stuartii is a highly social pathogen responsible for nosocomial chronic urinary tract infections. The bacterium indeed forms floating communities of cells (FCC) besides and prior-to canonical surface-attached biofilms (SAB). Within P. stuartii FCC, cells are riveted one to another owing to by self-interactions between its porins, viz. Omp-Pst1 and Omp-Pst2. In pathophysiological conditions, P. stuartii is principally exposed to high concentrations of urea, ammonia, bicarbonate, creatinine and to large variations of pH, questioning how these environmental cues affect socialization, and whether formation of SAB and FCC protects cells against those. Results from our investigations indicate that FCC and SAB can both form in the urinary tract, endowing cells with increased resistance and fitness. They additionally show that while Omp-Pst1 is the main gateway allowing penetration of urea, bicarbonate and ammonia into the periplasm, expression of Omp-Pst2 enables resistance to them.

3.
Commun Biol ; 5(1): 317, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35383285

RESUMO

Bacterial homologous lysine and arginine decarboxylases play major roles in the acid stress response, physiology, antibiotic resistance and virulence. The Escherichia coli enzymes are considered as their archetypes. Whereas acid stress triggers polymerisation of the E. coli lysine decarboxylase LdcI, such behaviour has not been observed for the arginine decarboxylase Adc. Here we show that the Adc from a multidrug-resistant human pathogen Providencia stuartii massively polymerises into filaments whose cryo-EM structure reveals pronounced differences between Adc and LdcI assembly mechanisms. While the structural determinants of Adc polymerisation are conserved only in certain Providencia and Burkholderia species, acid stress-induced polymerisation of LdcI appears general for enterobacteria. Analysis of the expression, activity and oligomerisation of the P. stuartii Adc further highlights the distinct properties of this unusual protein and lays a platform for future investigation of the role of supramolecular assembly in the superfamily or arginine and lysine decarboxylases.


Assuntos
Carboxiliases , Providencia , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/metabolismo , Providencia/enzimologia
5.
Toxins (Basel) ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206749

RESUMO

The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, I explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, I discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.


Assuntos
Toxinas de Bacillus thuringiensis/química , Bacillus thuringiensis , Proteínas de Bactérias/química , Cristalização , Controle Biológico de Vetores
6.
Toxins (Basel) ; 13(7)2021 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-34206796

RESUMO

Bacillus thuringiensis (Bt) is a natural crystal-making bacterium. Bt diversified into many subspecies that have evolved to produce crystals of hundreds of pesticidal proteins with radically different structures. Their crystalline form ensures stability and controlled release of these major virulence factors. They are responsible for the toxicity and host specificity of Bt, explaining its worldwide use as a biological insecticide. Most research has been devoted to understanding the mechanisms of toxicity of these toxins while the features driving their crystallization have long remained elusive, essentially due to technical limitations. The evolution of methods in structural biology, pushing back the limits of the resolution attainable, now allows access to be gained to structural information hidden within natural crystals of such toxins. In this review, I present the main parameters that have been identified as key drivers of toxin crystallization in Bt, notably in the light of recent discoveries driven by structural biology studies. Then, I develop how the future evolution of structural biology will hopefully unveil new mechanisms of Bt toxin crystallization, opening the door to their hijacking with the aim of developing a versatile in vivo crystallization platform of high academic and industrial interest.


Assuntos
Toxinas de Bacillus thuringiensis , Bacillus thuringiensis/metabolismo , Proteínas de Bactérias , Toxinas de Bacillus thuringiensis/química , Toxinas de Bacillus thuringiensis/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalização
7.
Front Immunol ; 12: 635131, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868258

RESUMO

Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail's immune arsenal.


Assuntos
Biomphalaria/genética , Vetores de Doenças , Evolução Molecular , Família Multigênica , Proteínas Citotóxicas Formadoras de Poros/genética , Schistosoma mansoni/patogenicidade , Animais , Biomphalaria/metabolismo , Biomphalaria/parasitologia , Duplicação Gênica , Variação Genética , Interações Hospedeiro-Parasita , Filogenia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Especificidade da Espécie
8.
PLoS Pathog ; 16(10): e1008935, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33057453

RESUMO

In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.


Assuntos
Infecções Bacterianas/imunologia , Larva/microbiologia , Óvulo/imunologia , Serratia/patogenicidade , Tenebrio/microbiologia , Animais , Bacillus thuringiensis/patogenicidade , Imunidade/imunologia , Proteômica/métodos , Tenebrio/imunologia
9.
PLoS Pathog ; 16(9): e1008826, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32970778

RESUMO

The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection.


Assuntos
Bacillus thuringiensis/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição GATA/metabolismo , Sistema de Sinalização das MAP Quinases , Transcrição Gênica , Animais , Bacillus thuringiensis/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição GATA/genética
10.
Sci Total Environ ; 724: 137800, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32249002

RESUMO

Bacillus thuringiensis subsp. israelensis (Bti) has been used in mosquito control programs to reduce nuisance in Europe for decades and is generally considered an environmentally-safe, effective and target-specific biocide. However, the use of Bti is not uncontroversial. Target mosquitoes and affected midges represent an important food source for many aquatic and terrestrial predators and reduction of their populations is likely to result in food-web effects at higher trophic levels. In the context of global biodiversity loss, this appears particularly critical since treated wetlands are often representing conservation areas. In this review, we address the current large-scale use of Bti for mosquito nuisance control in Europe, provide a description of its regulation followed by an overview of the available evidence on the parameters that are essential to evaluate Bti use in mosquito control. Bti accumulation and toxin persistence could result in a chronic expose of mosquito populations ultimately affecting their susceptibility, although observed increase in resistance to Bti in mosquito populations is low due to the four toxins involved. A careful independent monitoring of mosquito susceptibility, using sensitive bioassays, is mandatory to detect resistance development timely. Direct Bti effects were documented for non-target chironomids and other invertebrate groups and are discussed for amphibians. Field studies revealed contrasting results on possible impacts on chironomid abundances. Indirect, food-web effects were rarely studied in the environment. Depending on study design and duration, Bti effects on higher trophic levels were demonstrated or not. Further long-term field studies are needed, especially with observations of bird declines in Bti-treated wetland areas. Socio-economic relevance of mosquito control requires considering nuisance, vector-borne diseases and environmental effects jointly. Existing studies indicate that a majority of the population is concerned regarding potential environmental effects of Bti mosquito control and that they are willing to pay for alternative, more environment-friendly techniques.


Assuntos
Bacillus thuringiensis , Desinfetantes , Animais , Europa (Continente) , Larva , Controle de Mosquitos , Controle Biológico de Vetores , Fatores Socioeconômicos
11.
Nat Commun ; 11(1): 1153, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123169

RESUMO

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/química , Endotoxinas/genética , Endotoxinas/farmacologia , Células HEK293 , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Conformação Proteica , Células Sf9
12.
Genes (Basel) ; 11(1)2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31936048

RESUMO

Biomphalaria glabrata is a freshwater Planorbidae snail. In its environment, this mollusk faces numerous microorganisms or pathogens, and has developed sophisticated innate immune mechanisms to survive. The mechanisms of recognition are quite well understood in Biomphalaria glabrata, but immune effectors have been seldom described. In this study, we analyzed a new family of potential immune effectors and characterized five new genes that were named Glabralysins. The five Glabralysin genes showed different genomic structures and the high degree of amino acid identity between the Glabralysins, and the presence of the conserved ETX/MTX2 domain, support the hypothesis that they are pore-forming toxins. In addition, tertiary structure prediction confirms that they are structurally related to a subset of Cry toxins from Bacillus thuringiensis, including Cry23, Cry45, and Cry51. Finally, we investigated their gene expression profiles in snail tissues and demonstrated a mosaic transcription. We highlight the specificity in Glabralysin expression following immune stimulation with bacteria, yeast or trematode parasites. Interestingly, one Glabralysin was found to be expressed in immune-specialized hemocytes, and two others were induced following parasite exposure.


Assuntos
Biomphalaria/genética , Biomphalaria/imunologia , Proteínas Citotóxicas Formadoras de Poros/genética , Aminoácidos/genética , Animais , Biologia Computacional/métodos , Vetores de Doenças , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Estrutura Terciária de Proteína/genética , Caramujos/metabolismo , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Transcriptoma
13.
Front Immunol ; 10: 1938, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31475001

RESUMO

Trans-generational immune priming (TGIP) refers to the transfer of the parental immunological experience to its progeny. This may result in offspring protection from repeated encounters with pathogens that persist across generations. Although extensively studied in vertebrates for over a century, this phenomenon has only been identified 20 years ago in invertebrates. Since then, invertebrate TGIP has been the focus of an increasing interest, with half of studies published during the last few years. TGIP has now been tested in several invertebrate systems using various experimental approaches and measures to study it at both functional and evolutionary levels. However, drawing an overall picture of TGIP from available studies still appears to be a difficult task. Here, we provide a comprehensive review of TGIP in invertebrates with the objective of confronting all the data generated to date to highlight the main features and mechanisms identified in the context of its ecology and evolution. To this purpose, we describe all the articles reporting experimental investigation of TGIP in invertebrates and propose a critical analysis of the experimental procedures performed to study this phenomenon. We then investigate the outcome of TGIP in the offspring and its ecological and evolutionary relevance before reviewing the potential molecular mechanisms identified to date. In the light of this review, we build hypothetical scenarios of the mechanisms through which TGIP might be achieved and propose guidelines for future investigations.


Assuntos
Adaptação Fisiológica/imunologia , Imunidade Adaptativa/imunologia , Sistema Imunitário/imunologia , Padrões de Herança/imunologia , Invertebrados/imunologia , Adaptação Fisiológica/genética , Imunidade Adaptativa/genética , Animais , Evolução Molecular , Feminino , Sistema Imunitário/metabolismo , Padrões de Herança/genética , Invertebrados/classificação , Invertebrados/genética , Larva/genética , Larva/imunologia , Masculino
14.
Dev Comp Immunol ; 101: 103463, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31381929

RESUMO

The snail Pseudosuccinea columella is one of the main vectors of the medically-important trematode Fasciola hepatica. In Cuba, the existence of natural P. columella populations that are either susceptible or resistant to F. hepatica infection offers a unique snail-parasite for study of parasite-host compatibility and immune function in gastropods. Here, we review all previous literature on this system and present new "omic" data that provide a molecular baseline of both P. columella phenotypes from naïve snails. Comparison of whole snail transcriptomes (RNAseq) and the proteomes of the albumen gland (2D-electrophoresis, MS) revealed that resistant and susceptible strains differed mainly in an enrichment of particular biological processes/functions and a greater abundance of proteins/transcripts associated with immune defense/stress response in resistant snails. These results indicate a differential allocation of molecular resources to self-maintenance and survival in resistant P. columella that may cause enhanced responsiveness to stressors (i.e. F. hepatica infection or tolerance to variations in environmental pH/total water hardness), possibly as trade-off against reproduction and the ecological cost of resistance previously suggested in resistant populations of P. columella.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Imunidade Inata/genética , Caramujos/imunologia , Caramujos/parasitologia , Animais , Fasciola hepatica , Interações Hospedeiro-Parasita/genética , Imunidade Inata/imunologia , Caramujos/genética
16.
Adv Exp Med Biol ; 1142: 273-292, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31102251

RESUMO

Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.


Assuntos
Quitina , Controle de Insetos , Animais , Insetos
17.
Mol Ecol Resour ; 19(2): 485-496, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30449074

RESUMO

The cabbage looper, Trichoplusia ni, is a globally distributed highly polyphagous herbivore and an important agricultural pest. T. ni has evolved resistance to various chemical insecticides, and is one of the only two insect species that have evolved resistance to the biopesticide Bacillus thuringiensis (Bt) in agricultural systems and has been selected for resistance to baculovirus infections. We report a 333-Mb high-quality T. ni genome assembly, which has N50 lengths of scaffolds and contigs of 4.6 Mb and 140 Kb, respectively, and contains 14,384 protein-coding genes. High-density genetic maps were constructed to anchor 305 Mb (91.7%) of the assembly to 31 chromosomes. Comparative genomic analysis of T. ni with Bombyx mori showed enrichment of tandemly duplicated genes in T. ni in families involved in detoxification and digestion, consistent with the broad host range of T. ni. High levels of genome synteny were found between T. ni and other sequenced lepidopterans. However, genome synteny analysis of T. ni and the T. ni derived cell line High Five (Hi5) indicated extensive genome rearrangements in the cell line. These results provided the first genomic evidence revealing the high instability of chromosomes in lepidopteran cell lines known from karyotypic observations. The high-quality T. ni genome sequence provides a valuable resource for research in a broad range of areas including fundamental insect biology, insect-plant interactions and co-evolution, mechanisms and evolution of insect resistance to chemical and biological pesticides, and technology development for insect pest management.


Assuntos
Cromossomos de Insetos , Genoma de Inseto , Herbivoria/genética , Lepidópteros/genética , Animais , Biologia Computacional , Evolução Molecular , Rearranjo Gênico , Análise de Sequência de DNA , Sintenia
18.
Insects ; 9(4)2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30558130

RESUMO

Understanding the interactions between pathogens sharing the same host can be complicated for holometabolous animals when larval and adult stages are exposed to distinct pathogens. In medically important insect vectors, the effect of pathogen exposure at the larval stage may influence susceptibility to human pathogens at the adult stage. We addressed this hypothesis in the mosquito Aedes aegypti, a major vector of arthropod-borne viruses (arboviruses), such as the dengue virus (DENV) and the chikungunya virus (CHIKV). We experimentally assessed the consequences of sub-lethal exposure to the bacterial pathogen Bacillus thuringiensis subsp. israelensis (Bti), during larval development, on arbovirus susceptibility at the adult stage in three Ae. aegypti strains that differ in their genetic resistance to Bti. We found that larval exposure to Bti significantly increased DENV susceptibility, but not CHIKV susceptibility, in the Bti-resistant strains. However, there was no major difference in the baseline arbovirus susceptibility between the Bti-resistant strains and their Bti-susceptible parental strain. Although the generality of our results remains to be tested with additional arbovirus strains, this study supports the idea that the outcome of an infection by a pathogen depends on other pathogens sharing the same host even when they do not affect the same life stage of the host. Our findings may also have implications for Bti as a mosquito biocontrol agent, indicating that the sub-optimal Bti efficacy may have counter-productive effects by increasing vector competence, at least for some combinations of arbovirus and mosquito strains.

19.
Toxins (Basel) ; 10(7)2018 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-29986377

RESUMO

Toxins are a major virulence factor produced by many pathogenic bacteria. In vertebrates, the response of hosts to the bacteria is inseparable from the response to the toxins, allowing a comprehensive understanding of this tripartite host-pathogen-toxin interaction. However, in invertebrates, this interaction has been investigated by two complementary but historically distinct fields of research: toxinology and immunology. In this article, I highlight how such dichotomy between these two fields led to a biased, or even erroneous view of the ecology and evolution of the interaction between insects, toxins, and bacteria. I focus on the reason behind such a dichotomy, on how to bridge the fields together, and on confounding effects that could bias the outcome of the experiments. Finally, I raise four questions at the border of the two fields on the cross-effects between toxins, bacteria, and spores that have been largely underexplored to promote a more comprehensive view of this interaction.


Assuntos
Fenômenos Fisiológicos Bacterianos , Toxinas Bacterianas/toxicidade , Interações Hospedeiro-Patógeno , Insetos , Animais , Insetos/efeitos dos fármacos , Insetos/microbiologia , Esporos Bacterianos
20.
Parasit Vectors ; 11(1): 121, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29499735

RESUMO

BACKGROUND: Insect microbiota is a dynamic microbial community that can actively participate in defense against pathogens. Bacillus thuringiensis (Bt) is a natural entomopathogen widely used as a bioinsecticide for pest control. Although Bt's mode of action has been extensively studied, whether the presence of microbiota is mandatory for Bt to effectively kill the insect is still under debate. An association between a higher tolerance and a modified microbiota was already evidenced but a critical point remained to be solved: is the modified microbiota a cause or a consequence of a higher tolerance to Bt? METHODS: In this study we focused on the mosquito species Aedes aegypti, as no work has been performed on Diptera on this topic to date, and on B. thuringiensis israelensis (Bti), which is used worldwide for mosquito control. To avoid using antibiotics to cure bacterial microbiota, mosquito larvae were exposed to an hourly increasing dose of Bti during 25 hours to separate the most susceptible larvae dying quickly from more tolerant individuals, with longer survival. RESULTS: Denaturing gradient gel electrophoresis (DGGE) fingerprinting revealed that mosquito larval bacterial microbiota was strongly affected by Bti infection after only a few hours of exposure. Bacterial microbiota from the most tolerant larvae showed the lowest diversity but the highest inter-individual differences. The proportion of Bti in the host tissue was reduced in the most tolerant larvae as compared to the most susceptible ones, suggesting an active control of Bti infection by the host. CONCLUSIONS: Here we show that a modified microbiota is associated with a higher tolerance of mosquitoes to Bti, but that it is rather a consequence of Bti infection than the cause of the higher tolerance. This study paves the way to future investigations aiming at unraveling the role of host immunity, inter-species bacterial competition and kinetics of host colonization by Bti that could be at the basis of the phenotype observed in this study.


Assuntos
Aedes/microbiologia , Bacillus thuringiensis/fisiologia , Larva/microbiologia , Microbiota/genética , Animais , Impressões Digitais de DNA , Eletroforese em Gel de Gradiente Desnaturante , Infecções por Bactérias Gram-Positivas , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA